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The Changing Earth

https://earthengine.google.com/timelapse/
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Monitoring the Change

 High-resolution monitoring possible due to projects 
such as CubeSats 

 International program to bring microsatellite into 
the orbit 

 Statistics mid 2017: over 600 CubeSat missions, 
165 active at the moment

Dates: https://sites.google.com/a/slu.edu/swartwout/home/cubesat-database#defs 

Images: http://tia.arc.nasa.gov/genesat1/systemsSummary.html
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Challenges

 Amount of data (volume)

 Permanent change makes monitoring 
difficult (velocity)

 Various data sources are not 
combinable in a trivial way (variaty)

 Data uncertainty (veracity)

typical Big Data challenges
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Remote Sensing Tasks

 Self-taught learning for classification

 Sparse representation-based spectral 
clustering for change detection

 Archetypal analysis for unmixing
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Self-taught Learning for 
Classification
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Classification Task
Processed satellite images

 Pixel with class information 
(labeled)

 Pixel without class information 
(unlabeled)

Feature learning

Classification

 Learning step

 Testing step

Evaluation + 
Post-processing

Land use and land cover map

Land use and land cover 
map Posterior 

probabilities
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Paradigms

 Supervised learning

 Semi-supervised learning

 Unsupervised learning

 Self-taught learning

 Other approaches

 Transfer Learning/Domain adaptation

 ...
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Classification Paradigms

Supervised learning

infrared

green
urban

forest

x
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Classification Paradigms

Semi-supervised learning
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forest
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Classification Paradigms

Unsupervised learning

x

infrared

green
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Classification paradigms

Self-taught learning

infrared

green
urban

forest
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Feature/Representation 
Learning

Learning a new data representation 
which is more suitable for classification 
than the original data representation

Powerful feature representation
 Discriminative
 Robust
 Lower complexity
 Easier to interpret
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Feature Learning

infrared

green
class 1

class 2

feature 2

feature 1 class 1

class 2

Original representation Discriminative representation
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Feature Learning

Learning a new data representation 
which is more suitable for classification 
than the original data representation

Unlabeled data is used in a self-taught 
learning framework to learn this 
representation

Most common approach to self-taught 
learning is sparse representation
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Sparse Representation
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Self-taught Learning

 Dictionary contains unlabeled data

 Assumption: samples of the same class are 
reconstructed with a similar set of dictionary 
elements and similar weights

 Goal: new representation is highly discriminative

training
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Self-taught Learning

 Dictionary is fixed

 Classify is trained and tested with new 
representation

testing
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Data Set
 Landsat 5 TM image 

near Novo Progresso 
(Brazil)

 Ca. 8000x8000 pixel

 30x30m spatial 
resolution

 Area characterized by 
fire clearing

 Reference 
information: Forest, 
deforestation (fire 
clearing) and arable 
land

 Subarea: ~900km2
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Dictionary Elements

 ~1 Mio. image patches
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Archetypal Analysis: SiVM

 Archetypal analysis finds the extreme points 
(archetypes) in feature space

 Efficient determination by Simplex Volume 
Maximization (SiVM)

 Assumption: Convex hull consists of points, which 
maximize the volume

Christian Thurau, Kristian Kersting, Christian Bauckhage (2010): Yes We Can – Simplex Volume Maximization for 
Descriptive Web-Scale Matrix Factorization
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Archetypal Analysis: SiVM

1. Randomly choose (virtual) starting point

2. Choose sample which is farthest away

3. Set this sample as first archetype

4. Choose next sample which is farthest away from 
all previous archetypes

Christian Thurau, Kristian Kersting, Christian Bauckhage (2010): Yes We Can – Simplex Volume Maximization for 
Descriptive Web-Scale Matrix Factorization
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Self-taught Learning Results

Roscher, R., Römer, C.,  Waske, B., Plümer, L. (2015). Landcover Classification with Self-taught Learning on 
Archetypal Dictionaries, IGARSS, Symposium Paper Prize Award

Satellite image Land cover Maximum posterior 
probability (certainty)

Posterior probability: 
arable
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Archetypal Dictionaries

Challenge: Set of archetypes depends on 
initial point

 Highly variable in high dimensions

 Highly variable if data is normalized (e.g. 
global contrast normalization)
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Archetypal Dictionaries

 Finding the best set of archetypes regarding 
specific criteria by minimizing

 Challenge: elements unknown + number of 
elements unknown

Reversible jump Markov chain Monte Carlo

discriminative part (logistic 
regression CV error) 

reconstructive part 
(reconstruction error) 

R. Roscher, S. Wenzel, and B. Waske, “Discriminative Archetypal Self-taught Learning for Multispectral Landcover Classification,” 
in Proc. of Pattern Recogniton in Remote Sensing 2016 (PRRS), Workshop at ICPR; to appear in IEEE Xplore , 2016.
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Reversible Jump Markov Chain 
Monte Carlo

Advantages

 Finds global optimum

Drawbacks

 Computation of discriminative part and 
sparse representation is slow
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Discriminative STL

Zurich data set

 20 VHR multispectral images acquired by Quickbird
sensor (0.61m/pixel, R-G-B-NIR)

 8 land cover classes

 Image patches of size 5x5 pixel

 Evaluation by leave-one-out estimation
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Discriminative STL

Zurich data set

 Average number of used dictionary elements is 22 
with a standard deviation of approximately 6 
elements

Roscher, R., Wenzel, S., Waske, B. (2016). Discriminative Archetypal Self-taught Learning for Multispectral Landcover 
Classification, Proc. of Pattern Recogniton in Remote Sensing, Workshop at ICPR; to appear in IEEE Xplore
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Going Deep (Ongoing Research)

 Deep self-taught learning with sparse 
representation

 Output from a previous layer serves as 
input the next layer

 Feature representation in last layer 
used for classification 
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Deep Self-taught Learning

archetypal analysis sparse representation

sparse representation

unlabeled image patches labeled image patches

layer 1

archetypal analysis sparse representation

sparse representation

layer 2
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Deep Self-taught Learning

archetypal analysis sparse representation layer L

classifier training

evaluation

backpropagation
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Deep Self-taught Learning

archetypal analysis sparse representation

sparse representation

unlabeled image patches labeled image patches

layer 1

archetypal analysis sparse representation

sparse representation

layer 2
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Self-taught Learning - Résumé

 Self-taught learning with sparse 
representation can find a discriminative 
feature representation

 Archetypal dictionaries are undercomplete, 
yet powerful

 Initialization of archetypal analysis 
influences the classification success

 Extension to Deep STL promising

 All activations can be interpreted as mixings of 
archetypes

 Deeper layers are deeper mixings
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Sparse Representation-based 
Spectral Clustering for Change 

Detection
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Change Detection Task
Processed satellite images

 2 images: pre-event and post 
event

Feature extraction
Clustering + 
change assigment

Evaluation + 
Post-processing

Change maps

binaryamount of 
change



39

Data set

Bastrop fire dataset (Landsat 5 TM)

Challenges

 No label information

 Spectral differences due to changing 
weather conditions, atmospheric conditions, 
seasonal effects...

Pre-event image Post-event image



40

Spectral Clustering

Spectral clustering performs clustering 
on the singular vectors to the smallest 
singular values derived from a 
unnormalized Graph Laplacian

or normalized Graph Laplacian

degree matrixsimilarity/adjacency 
matrix

Von Luxburg, U. (2007). A tutorial on spectral clustering. Statistics and computing, 17(4), 395-416.
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SR for Change Detection

 Approach: Clustering on stacked images

 Sparse representation is used to build a 
sparse adjacency graph     for spectral 
clustering
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Sparse archetypal adjacency matrix 

 Building a sparse representation-based 
graph is too computational intense

 Using landmarks = archetypes

 Nyström method for large data sets

Sparse Representation for 
Change Detection
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Change assignment

 Change in each cluster is derived from 
the means obtained from k-means

 Change of cluster mean is assigned to 
whole cluster

change
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Results

Roscher, R., Drees, L., Wenzel, S. (2017). Sparse Representation-based Archetypal Graphs for Spectral Clustering, 
IGARSS, accepted

Ground truth K-means Spectral clustering
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Sparse Representation for 
Change Detection

Precision-recall curve Receiver operating curve
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Archetypal Analysis for 
Unmixing
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Unmixing Task
Processed satellite image

 Pixel with class information 
(labeled)

 Pixel without class information 
(unlabeled)

Endmember 
extraction

 Manually or

 Automatically

Reconstruction 
by sparse 
representation

Evaluation

Sub-pixel quantification

?
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Unmixing Task

1. task: Find suitable endmembers

 manually derived spectral library

 archetypal dictionary

2. task: Estimate fractions (activations)

 Sparse representation
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Data

Berlin-Urban-Gradient dataset 2009

http://dataservices.gfz-potsdam.de/enmap/showshort.php?id=escidoc:1823890&show_gcmdcitation=false
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Data

http://dataservices.gfz-potsdam.de/enmap/showshort.php?id=escidoc:1823890&show_gcmdcitation=false

Study site: Southwest of Berlin 

Hyperspectral 
image

Manually derived 
spectral library

Reference land 
cover information

Simulated EnMAP 
scene
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Hyperspectral Data

 Airborne Sensor: HyMap

 111 spectral bands

 Observed wavelength 
450nm – 2500nm

 Spatial resolution of 
3.6m

 Visualized as RGB-image 
with the wavelengths 
R=640nm, G=540nm 
and B=450nm
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Reference Information

 Reference information 
was manually obtained

 digital orthophotos 

 cadastral data

 4 land cover classes

 Impervious surface

 Vegetation

 Soil & Sand

 Water
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Simulated EnMAP Data

Task: Reconstruction of fractions 
of simulated EnMAP data

 Simulated EnMAP scene of 
the same area

 Spatial resolution of 30m

 1495 EnMAP pixels were 
obtained from the simulation 
tool, containing the fractions of 
the land cover classes ranging 
from 0 to 100%
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 Archetypal dictionaries were 
interpreted using reference data

 High total amount of spectra in the 
manually derived spectral library

Archetypal Dictionary vs. 
Manually Derived Spectral Library 

Archetypal
dictionary

Manually derived 
library

Imp. Surface 25 39

Vegetation 12 31

Soil 2 4

Water 1 1

∑ 40 75
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Evaluation

 High number of elementary spectra in 
library results in a small reconstruction error

 All dictionaries achieve similar and 
satisfactory solutions

Archetypal
dictionary

Manually derived 
library

1.1 0.0

M
A

E
 [

%
]

Imp. Surface 12.2 16.0

Vegetation 11.0 9.2

Soil 2.5 2.1

Water 1.9 12.2

Ø 6.8 9.9

Drees, L. and Roscher, R. (2017). Archetypal analysis for sparse representation-based hyperspectral sub-pixel 
quantification, ISPRS Ann. Photogramm. Remote Sens. Spatial Inf. Sci., IV-1/W1, 133-139
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Summary

 Exploitation of unlabeled samples for 
learning

 Self-taught learning

 Unsupervised learning

 Sparse representation is a versatile 
tool

 More and more research goes into the 
direction of unsupervised pre-training 
in combination with supervised 
learning 
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Nyström Method

 Low rank approximation of Gram matrix

 Singular values and vectores

Pseudo-inverse of low rank approximation of W

SVD


