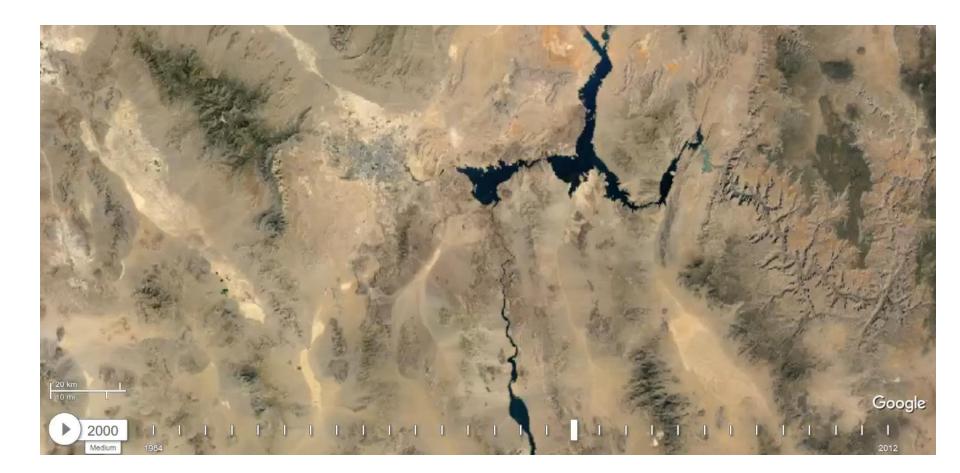


Unsupervised and Self-taught Learning for Remote Sensing Image Analysis

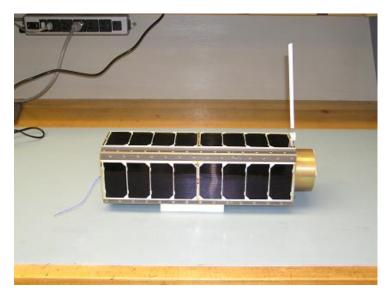
Ribana Roscher

Institute of Geodesy and Geoinformation, Remote Sensing Group, University of Bonn



Monitoring the Change

- High-resolution monitoring possible due to projects such as CubeSats
- International program to bring microsatellite into the orbit
- Statistics mid 2017: over 600 CubeSat missions, 165 active at the moment



Dates: https://sites.google.com/a/slu.edu/swartwout/home/cubesat-database#defs Images: http://tia.arc.nasa.gov/genesat1/systemsSummary.html



Challenges

- Amount of data (volume)
- Permanent change makes monitoring difficult (velocity)
- Various data sources are not combinable in a trivial way (variaty)
- Data uncertainty (veracity)

→ typical Big Data challenges

Remote Sensing Tasks

- Self-taught learning for classification
- Sparse representation-based spectral clustering for change detection
- Archetypal analysis for unmixing

Self-taught Learning for Classification

Classification Task

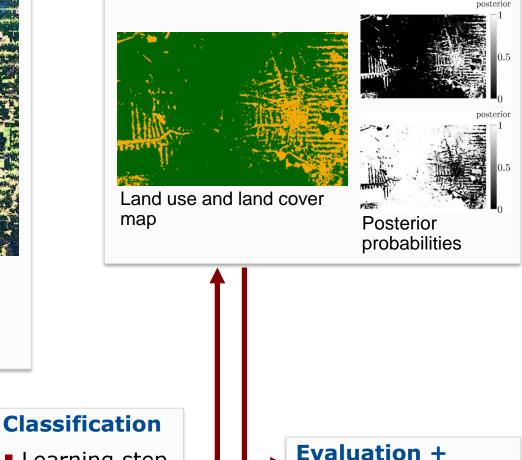
Processed satellite images

 Pixel with class information (labeled)

Feature learning

 Pixel without class information (unlabeled)

Land use and land cover map



Post-processing

- Learning step
- Testing step

Paradigms

- Supervised learning
- Semi-supervised learning
- Unsupervised learning
- Self-taught learning
- Other approaches
 - Transfer Learning/Domain adaptation

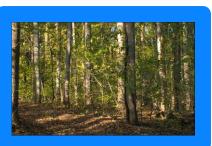
Classification Paradigms

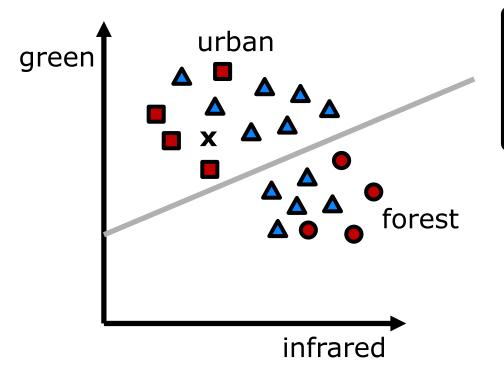
Supervised learning



Classification Paradigms

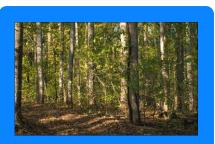
Semi-supervised learning

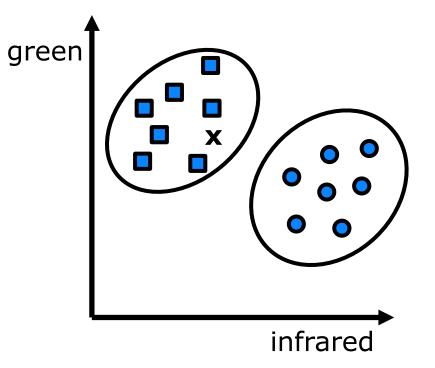




Classification Paradigms

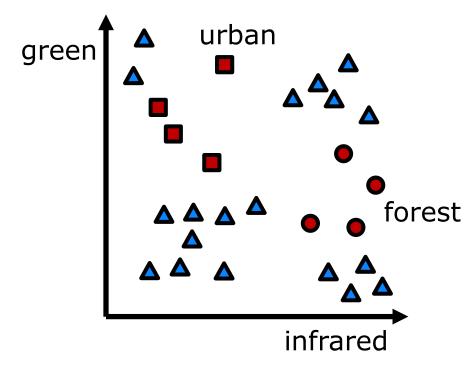
Unsupervised learning





Classification paradigms

Self-taught learning



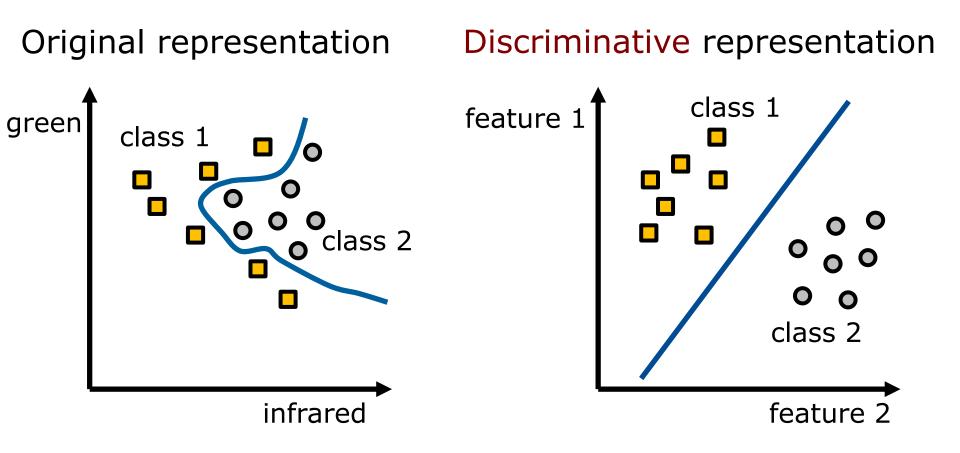
Feature/Representation Learning

Learning a **new data representation** which is more suitable for classification than the original data representation

Powerful feature representation

- Discriminative
- Robust
- Lower complexity
- Easier to interpret

Feature Learning

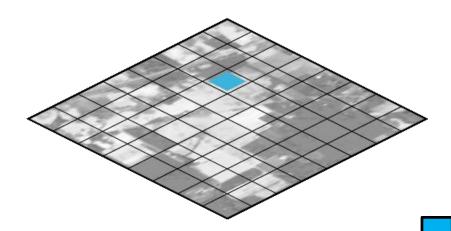


Feature Learning

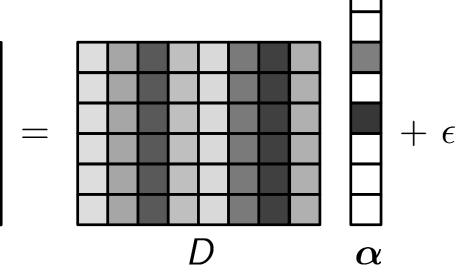
Learning a new data representation which is more suitable for classification than the original data representation

- Unlabeled data is used in a self-taught learning framework to learn this representation
- Most common approach to self-taught learning is sparse representation

Sparse Representation

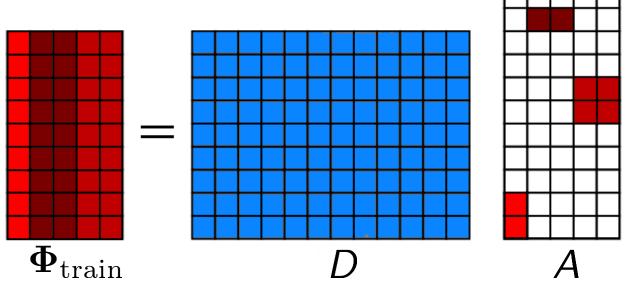


- $\phi: pixel/image patch (original representation)$
- D: dictionary
- α : sparse activation vector (new representation)
- $\|\boldsymbol{\epsilon}\|$: reconstruction error



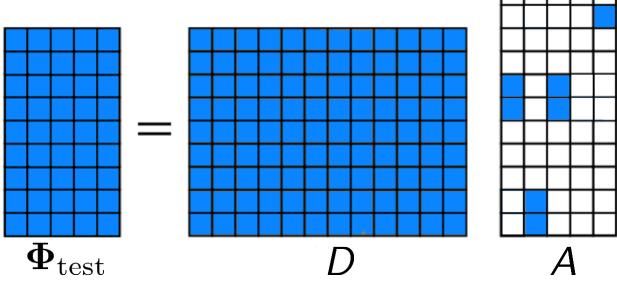
$$egin{aligned} \widehat{oldsymbol{lpha}} &= rgmin \| Doldsymbol{lpha} - oldsymbol{\phi} \| & ext{ s.t. } \| oldsymbol{lpha} \|_0 < W \ \widehat{oldsymbol{lpha}} &= rgmin \| Doldsymbol{lpha} - oldsymbol{\phi} \| & ext{ s.t. } oldsymbol{lpha} \succeq oldsymbol{0} \end{aligned}$$

Self-taught Learning training



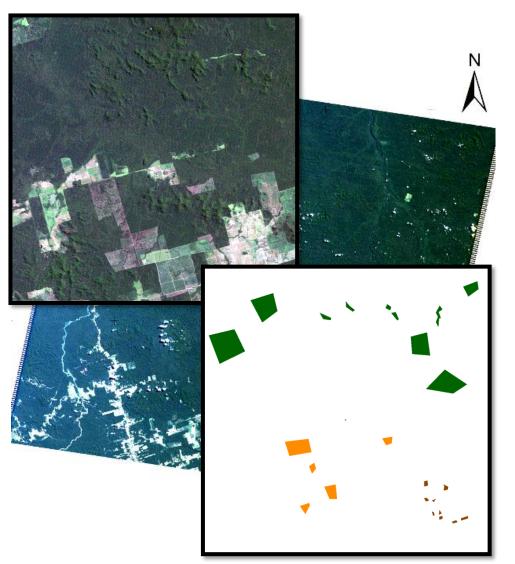
- Dictionary contains unlabeled data
- Assumption: samples of the same class are reconstructed with a similar set of dictionary elements and similar weights
- Goal: new representation is highly discriminative

Self-taught Learning testing



- Dictionary is fixed
- Classify is trained and tested with new representation

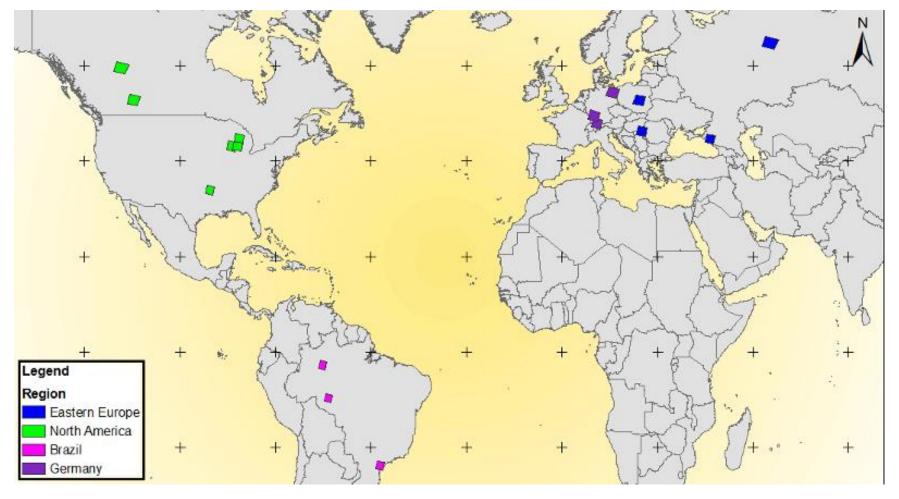
Data Set



- Landsat 5 TM image near Novo Progresso (Brazil)
- Ca. 8000x8000 pixel
- 30x30m spatial resolution
- Area characterized by fire clearing
- Reference information: Forest, deforestation (fire clearing) and arable land
- Subarea: ~900km²

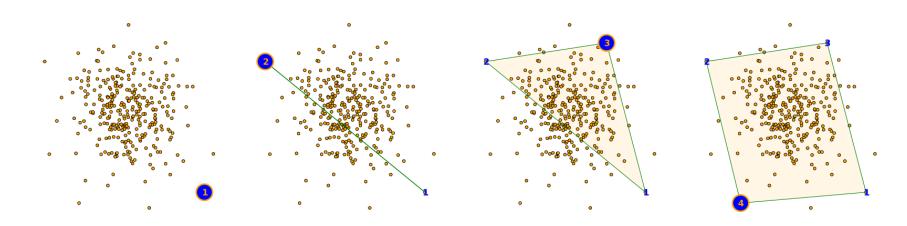
Dictionary Elements

~1 Mio. image patches



Archetypal Analysis: SiVM

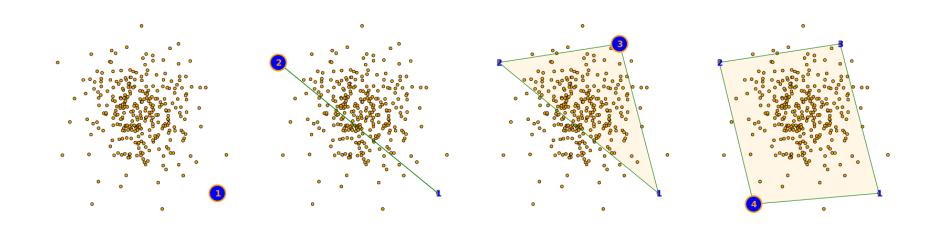
- Archetypal analysis finds the extreme points (archetypes) in feature space
- Efficient determination by Simplex Volume Maximization (SiVM)
- Assumption: Convex hull consists of points, which maximize the volume



Christian Thurau, Kristian Kersting, Christian Bauckhage (2010): Yes We Can – Simplex Volume Maximization for Descriptive Web-Scale Matrix Factorization

Archetypal Analysis: SiVM

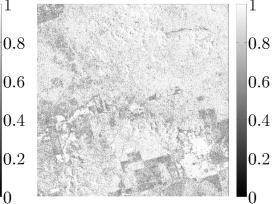
- 1. Randomly choose (virtual) starting point
- 2. Choose sample which is farthest away
- 3. Set this sample as first archetype
- 4. Choose next sample which is farthest away from all previous archetypes



Christian Thurau, Kristian Kersting, Christian Bauckhage (2010): Yes We Can – Simplex Volume Maximization for Descriptive Web-Scale Matrix Factorization

Self-taught Learning Results





Satellite image

Land cover

Posterior probability: arable

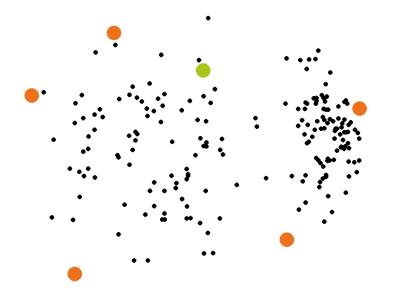
Maximum posterior probability (certainty)

		Original		STL-KSVD		STL-Archetypes	
		K-SVM	LR	K-SVM	LR	K-SVM	LR
	Arable	85.6%	81.3%	82.7%	83.7%	84.8%	84.0%
	Deforestation	80.2%	76.8%	84.0%	82.9%	83.9%	86.0%
	Forest	98.3%	98.4%	98.5%	98.0%	98.2%	98.2%
oa		89.5%	87.4%	90.1%	89.7%	90.5%	91.0%
аа		88.1%	85.5%	88.4%	88.2%	89.0%	89.4%
Карра		0.84	0.81	0.80	0.84	0.85	0.86

Roscher, R., Römer, C., Waske, B., Plümer, L. (2015). Landcover Classification with Self-taught Learning on Archetypal Dictionaries, IGARSS, Symposium Paper Prize Award

Archetypal Dictionaries

Challenge: Set of archetypes depends on initial point



- Highly variable in high dimensions
- Highly variable if data is normalized (e.g. global contrast normalization)

Archetypal Dictionaries

Finding the best set of archetypes regarding specific criteria by minimizing

$$U(D) = -\log(e) + \|\boldsymbol{\gamma}\|_2$$

discriminative part (logistic regression CV error)

reconstructive part (reconstruction error)

28

- Challenge: elements unknown + number of elements unknown
- Reversible jump Markov chain Monte Carlo

Reversible Jump Markov Chain Monte Carlo

Advantages

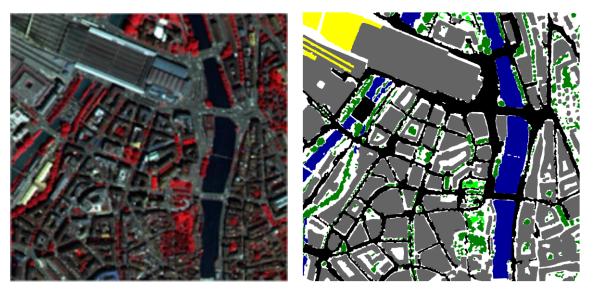
Finds global optimum

Drawbacks

 Computation of discriminative part and sparse representation is slow

Discriminative STL

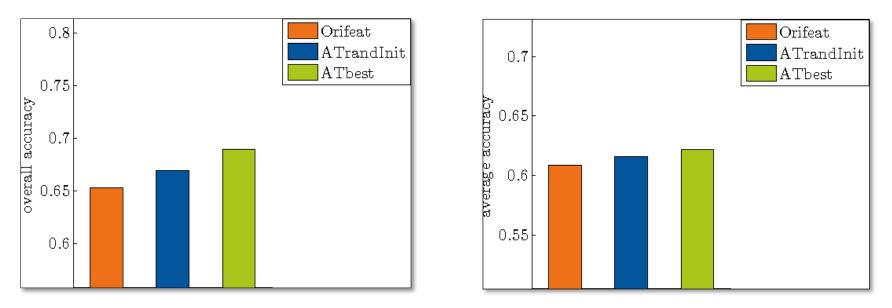
Zurich data set



- 20 VHR multispectral images acquired by Quickbird sensor (0.61m/pixel, R-G-B-NIR)
- 8 land cover classes
- Image patches of size 5x5 pixel
- Evaluation by leave-one-out estimation

Discriminative STL

Zurich data set



 Average number of used dictionary elements is 22 with a standard deviation of approximately 6 elements

Roscher, R., Wenzel, S., Waske, B. (2016). Discriminative Archetypal Self-taught Learning for Multispectral Landcover Classification, *Proc. of Pattern Recogniton in Remote Sensing, Workshop at ICPR; to appear in IEEE Xplore* 31

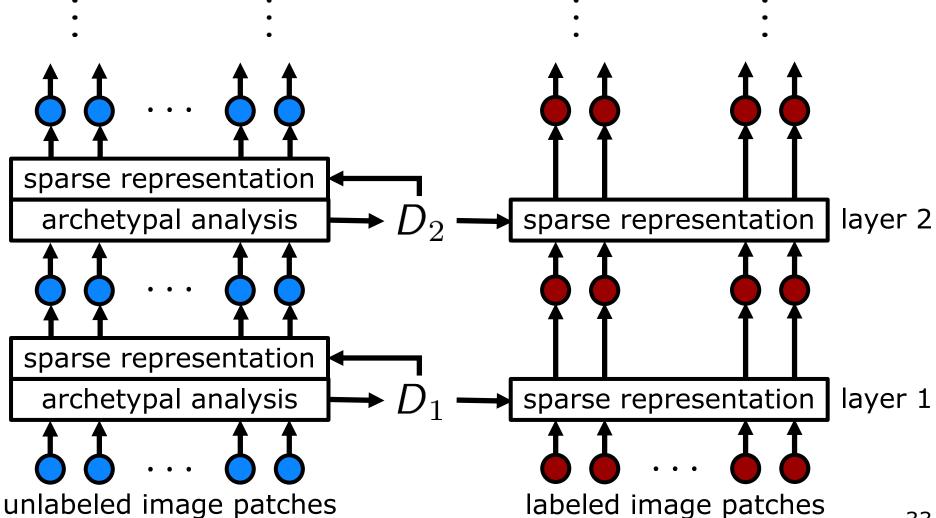
Going Deep (Ongoing Research)

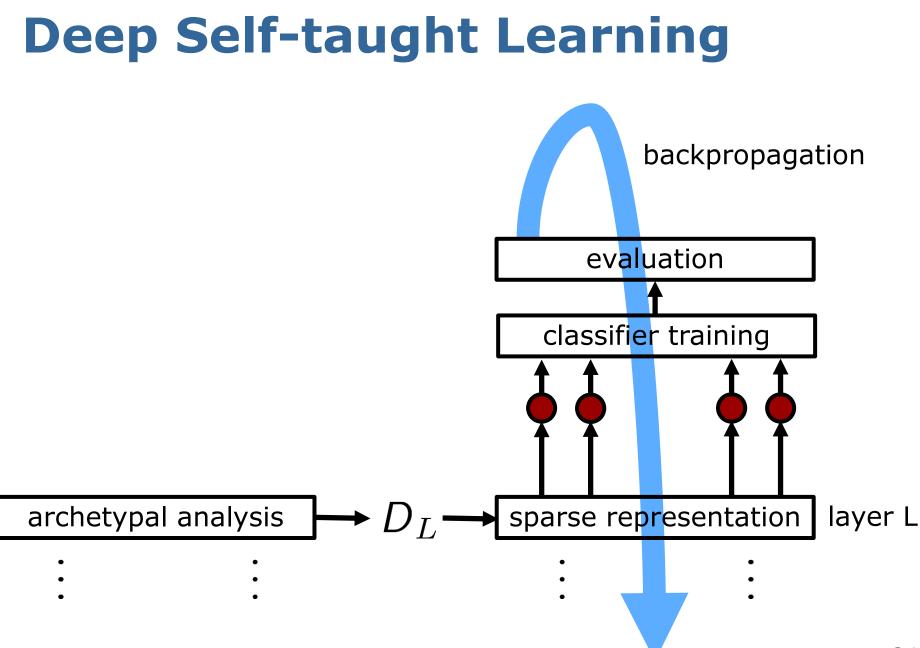
Deep self-taught learning with sparse representation

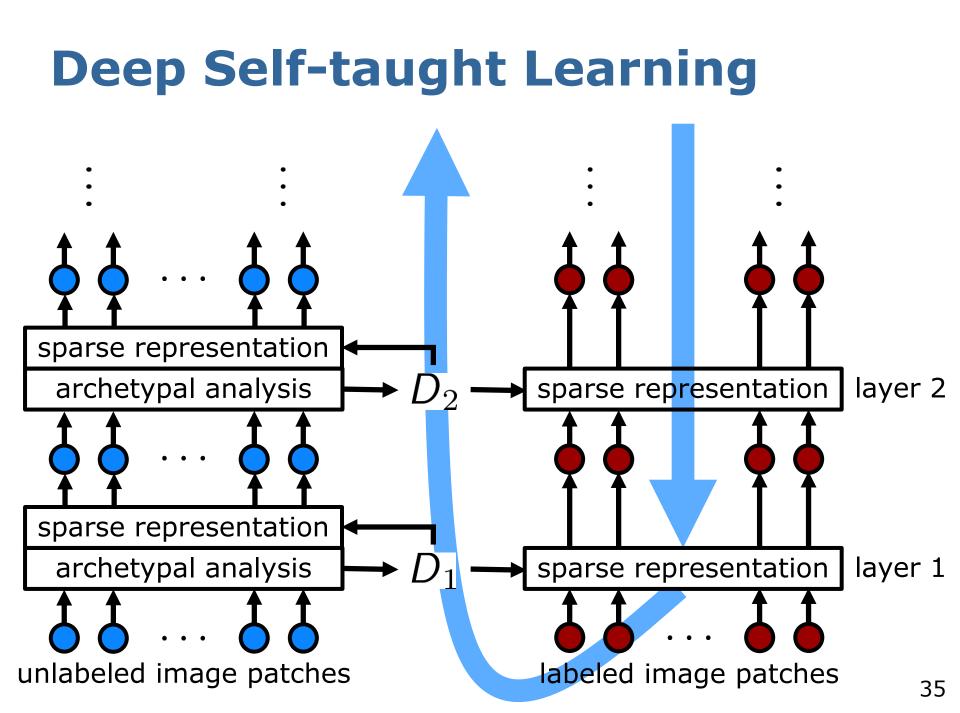
$$egin{array}{lll} oldsymbol{\phi} &= D_1 oldsymbol{lpha} \ oldsymbol{lpha}' &= D_2 oldsymbol{eta} \ oldsymbol{eta}' &= D_3 oldsymbol{\gamma} \ dots &dots &d$$

- Output from a previous layer serves as input the next layer
- Feature representation in last layer used for classification

Deep Self-taught Learning







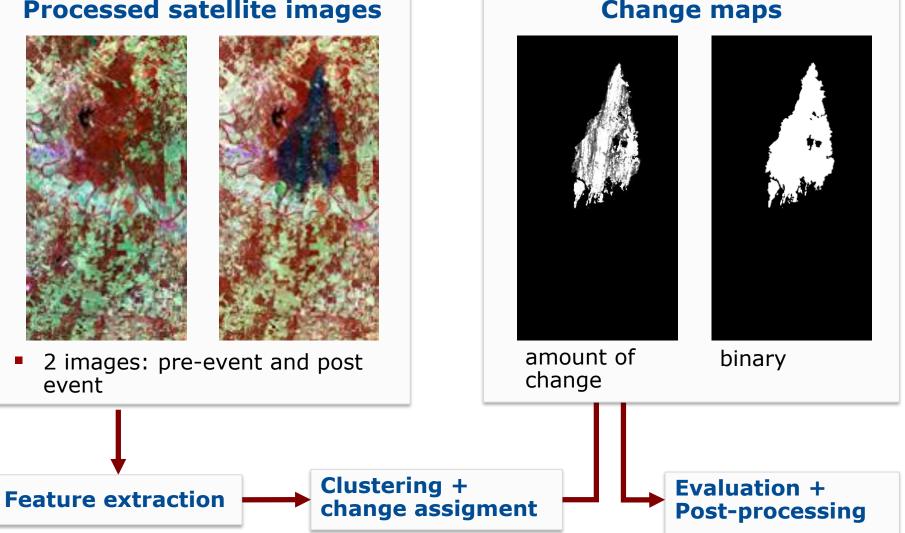
Self-taught Learning - Résumé

- Self-taught learning with sparse representation can find a discriminative feature representation
- Archetypal dictionaries are undercomplete, yet powerful
- Initialization of archetypal analysis influences the classification success
- Extension to Deep STL promising
 - All activations can be interpreted as mixings of archetypes
 - Deeper layers are deeper mixings

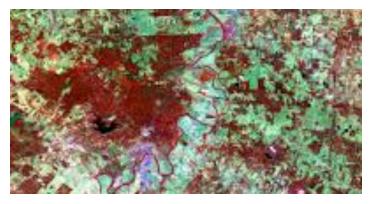
Sparse Representation-based Spectral Clustering for Change Detection

Change Detection Task

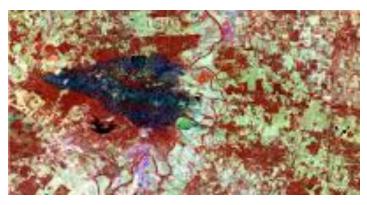
Processed satellite images



Bastrop fire dataset (Landsat 5 TM)



Pre-event image



Post-event image

Challenges

- No label information
- Spectral differences due to changing weather conditions, atmospheric conditions, seasonal effects...

Spectral Clustering

Spectral clustering performs clustering on the singular vectors to the smallest singular values derived from a unnormalized Graph Laplacian

L = D - W f $D = \text{diag} \left(\sum_{m} w_{m} \right)$ f degree matrixor normalized Graph Laplacian

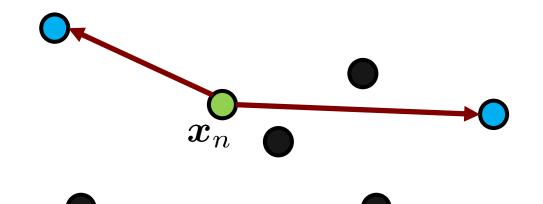
$$L_{\rm sym} = D^{-\frac{1}{2}} L D^{-\frac{1}{2}}$$

Von Luxburg, U. (2007). A tutorial on spectral clustering. *Statistics and computing*, 17(4), 395-416.

SR for Change Detection

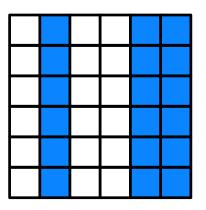
- Approach: Clustering on stacked images
- Sparse representation is used to build a sparse adjacency graph W for spectral clustering

$$\hat{\boldsymbol{\alpha}}_n = \operatorname{argmin}_t \| T \boldsymbol{\alpha}_n - \boldsymbol{\phi}_n \|_2$$
 subject to $\boldsymbol{\alpha}_n \succeq \mathbf{0}$
 $T = [\boldsymbol{\phi}_1, \dots, \boldsymbol{\phi}_{n-1}, \boldsymbol{\phi}_{n+1}, \dots, \boldsymbol{\phi}_N]$



Sparse Representation for Change Detection

Sparse archetypal adjacency matrix



- Building a sparse representation-based graph is too computational intense
- Using landmarks = archetypes
- Nyström method for large data sets

Change assignment

 Change in each cluster is derived from the means obtained from k-means

 Change of cluster mean is assigned to whole cluster

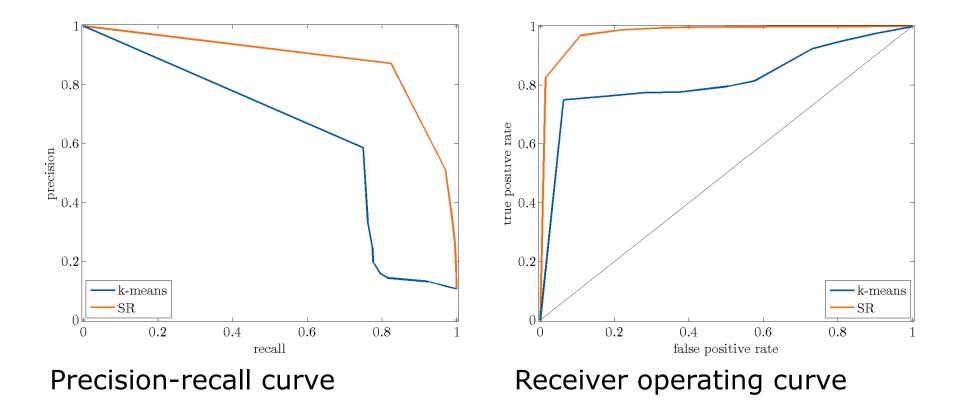
Results

Spectral clustering

Ground truth

K-means

Sparse Representation for Change Detection



Archetypal Analysis for Unmixing

Unmixing Task

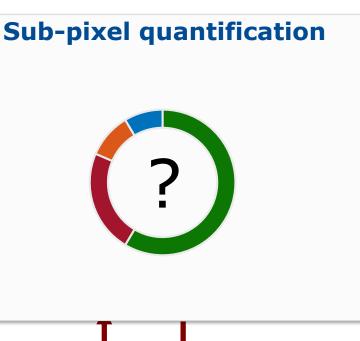
Processed satellite image

- Pixel with class information (labeled)
- Pixel without class information (unlabeled)

Endmember extraction

- Manually or
- Automatically

Reconstruction by sparse representation



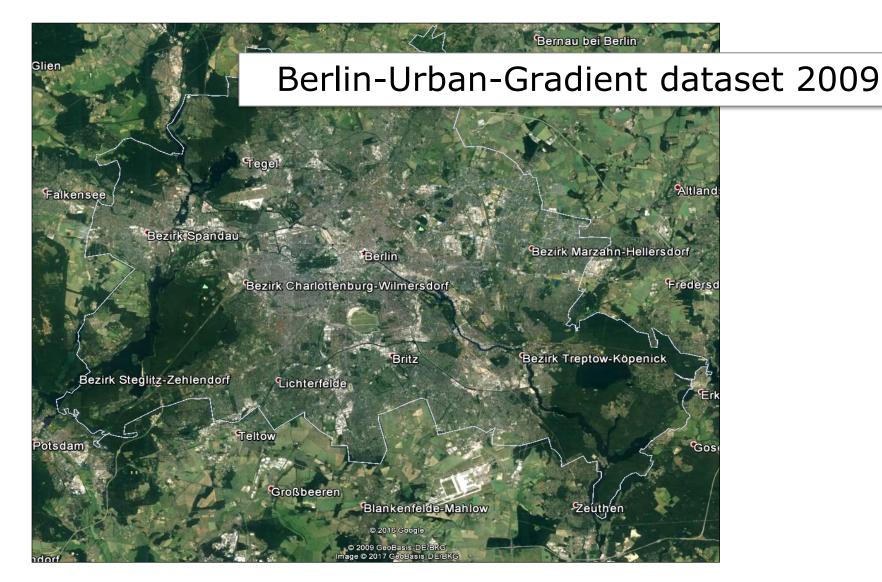
Evaluation

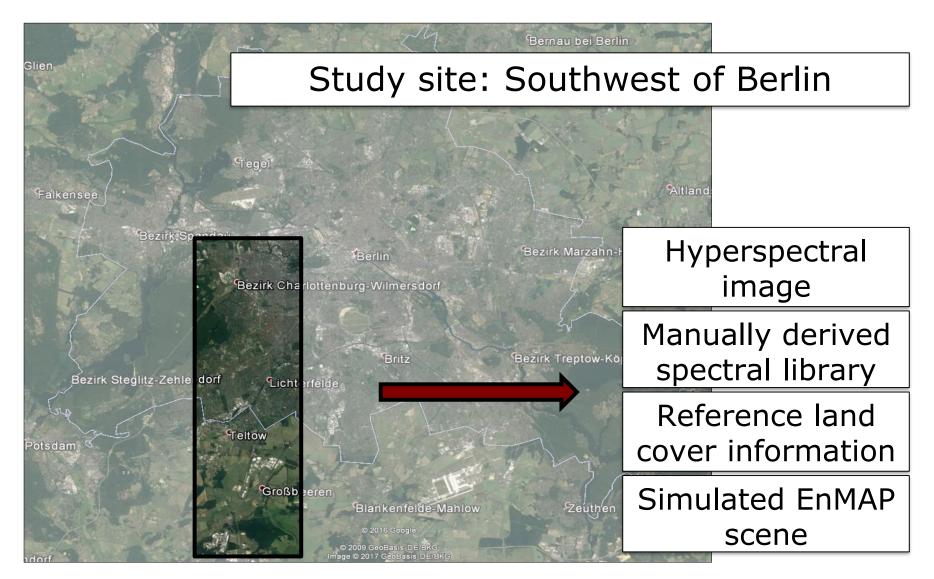
Unmixing Task

1. task: Find suitable endmembers

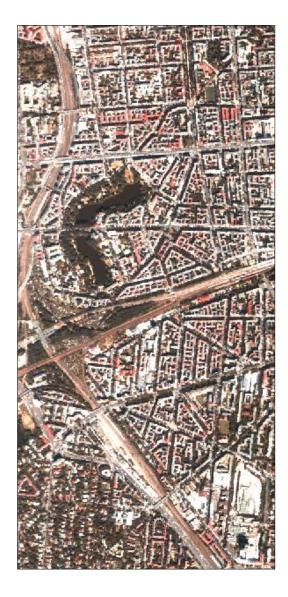
- manually derived spectral library
- archetypal dictionary
- 2. task: Estimate fractions (activations)
 - Sparse representation

 $\widehat{\boldsymbol{\alpha}} = \operatorname{argmin} \| \boldsymbol{D}\boldsymbol{\alpha} - \boldsymbol{\phi} \|$ s.t. $\boldsymbol{\alpha} \succeq \mathbf{0}, \sum_{t} \alpha_{t} = 1$



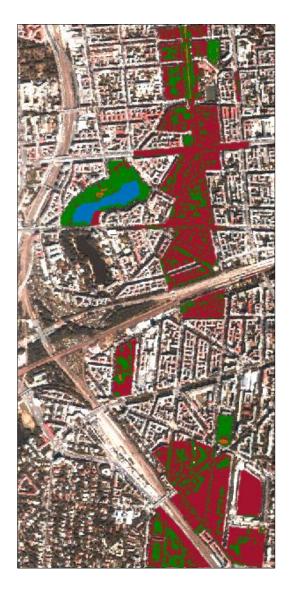


Hyperspectral Data



- Airborne Sensor: HyMap
- 111 spectral bands
- Observed wavelength 450nm – 2500nm
- Spatial resolution of 3.6m
- Visualized as RGB-image with the wavelengths R=640nm, G=540nm and B=450nm

Reference Information



- Reference information was manually obtained
 - digital orthophotos
 - cadastral data
- 4 land cover classes
 - Impervious surface
 - Vegetation
 - Soil & Sand
 - Water

Simulated EnMAP Data

- Simulated EnMAP scene of the same area
- Spatial resolution of 30m
- 1495 EnMAP pixels were obtained from the simulation tool, containing the fractions of the land cover classes ranging from 0 to 100%

Task: Reconstruction of fractions of simulated EnMAP data

Archetypal Dictionary vs. Manually Derived Spectral Library

 Archetypal dictionaries were interpreted using reference data

	Archetypal dictionary	Manually derived library
Imp. Surface	25	39
Vegetation	12	31
Soil	2	4
Water	1	1
Σ	40	75

 High total amount of spectra in the manually derived spectral library

Evaluation

		Archetypal dictionary	Manually derived library
$\ \boldsymbol{\epsilon}\ $		1.1	0.0
MAE [%]	Imp. Surface	12.2	16.0
	Vegetation	11.0	9.2
	Soil	2.5	2.1
	Water	1.9	12.2
	Ø	6.8	9.9

- High number of elementary spectra in library results in a small reconstruction error
- All dictionaries achieve similar and satisfactory solutions

Summary

- Exploitation of unlabeled samples for learning
 - Self-taught learning
 - Unsupervised learning
- Sparse representation is a versatile tool
- More and more research goes into the direction of unsupervised pre-training in combination with supervised learning

Nyström Method

$$L_{sym} = \begin{bmatrix} W & L_{sym,12} \\ L_{sym,21} & L_{sym,22} \end{bmatrix} \qquad C = \begin{bmatrix} W \\ G_{21} \end{bmatrix}$$

• Low rank approximation of Gram matrix $G \approx \widetilde{G} = CW_k^+ C^{\mathsf{T}}$

Pseudo-inverse of low rank approximation of W

Singular values and vectores

$$\tilde{S}_k = \frac{N}{K} S_{W,k}$$
 $\tilde{U}_k = \sqrt{\frac{K}{N}} C U_{W,k} S_{W,k}^+$