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The Changing Earth
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Monitoring the Change

= High-resolution monitoring possible due to projects
such as CubeSats

= International program to bring microsatellite into
the orbit

= Statistics mid 2017: over 600 CubeSat missions,
165 active at the moment
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Dates: https://sites.google.com/a/slu.edu/swartwout/home/cubesat-database#defs
Images: http://tia.arc.nasa.gov/genesatl/systemsSummary.html



Challenges

= Amount of data (volume)

= Permanent change makes monitoring
difficult (velocity)

= \arious data sources are not
combinable in a trivial way (variaty)

= Data uncertainty (veracity)

— typical Big Data challenges



Remote Sensing Tasks

= Self-taught learning for classification

= Sparse representation-based spectral
clustering for change detection

= Archetypal analysis for unmixing



Self-taught Learning for
Classification



Classification Task

Processed satellite images Land use and land cover map
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Land use and land cover

map Pbsterior
. ‘ probabilities
=  Pixel with class information
(labeled)
= Pixel without class information
(unlabeled)
Classification

Evaluation +

Feature learning g step Post-processing

= Testing step
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Paradigms

= Supervised learning

= Semi-supervised learning
= Unsupervised learning

= Self-taught learning

= Other approaches
= Transfer Learning/Domain adaptation
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Classification Paradigms

Supervised learning
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Classification Paradigms

Semi-supervised learning

infrared
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Classification Paradigms

Unsupervised learning
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Classification paradigms

Self-taught learning

infrared
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Feature/Representation
Learning

Learning a new data representation
which is more suitable for classification
than the original data representation

Powerful feature representation
= Discriminative
= Robust
= Lower complexity
= Easier to interpret
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Feature Learning

Original representation Discriminative representation
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Feature Learning

Learning a new data representation
which is more suitable for classification
than the original data representation

»Unlabeled data is used in a self-taught
learning framework to learn this

representation

»Most common approach to self-taught
learning is sparse representation
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lell -

pixel /image patch
(original representation)
dictionary

sparse activation vector
(new representation)
reconstruction error ¢

a = argmin||Da — ¢||

a = argmin||Da — ¢||

S.t.

S.t.

laflo < W

a0
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Self-taught Learning

training ;
-

(I)train D A

= Dictionary contains unlabeled data

= Assumption: samples of the same class are
reconstructed with a similar set of dictionary
elements and similar weights

= Goal: new representation is highly discriminative
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Self-taught Learning

testing

(I)test D
= Dictionary is fixed
= Classify is trained and tested with new
representation
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Landsat 5 TM image
near Novo Progresso
(Brazil)

Ca. 8000x8000 pixel

30x30m spatial
resolution

Area characterized by
fire clearing

Reference
information: Forest,
deforestation (fire
clearing) and arable
land

Subarea: ~900km?2
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Dictionary Elements
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Archetypal Analysis: SIVM

= Archetypal analysis finds the extreme points
(archetypes) in feature space

= Efficient determination by Simplex Volume
Maximization (SiVM)

= Assumption: Convex hull consists of points, which
maximize the volume
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Christian Thurau, Kristian Kersting, Christian Bauckhage (2010): Yes We Can - Simplex Volume Maximization for
Descriptive Web-Scale Matrix Factorization



Archetypal Analysis: SIVM

Randomly choose (virtual) starting point
Choose sample which is farthest away
Set this sample as first archetype

Choose next sample which is farthest away from
all previous archetypes
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Christian Thurau, Kristian Kersting, Christian Bauckhage (2010): Yes We Can - Simplex Volume Maximization for
Descriptive Web-Scale Matrix Factorization



Self-taught Learning R

esults

e v A R
Posterior probability: Maximum posterior

0

arable probability (certainty)
Original STL-KSVD STL-Archetypes
K-SVM LR K-SVM LR K-SVM LR

B Arabie 85.6% 81.3% 827% 83.7% 84.8%  84.0%
DEFORESTATION  80.2% 76.8% 84.0% 82.9% 83.9% 86.0%

B Forest 98.3% 98.4% 98.5% 98.0% 98.2%  98.2%
oa 89.5% 87.4% 90.1% 89.7% 90.5% 91.0%
aa 88.1% 855% 83.4% 88.2% 89.0% 89.4%
Kappa 0.84 0.81 0.80 0.84 0.85 0.86

Roscher, R., Rébmer, C., Waske, B., Plimer, L. (2015). Landcover Classification with Self-taught Learning on
Archetypal Dictionaries, IGARSS, Symposium Paper Prize Award
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Archetypal Dictionaries

Challenge: Set of archetypes depends on
initial point

= Highly variable in high dimensions

= Highly variable if data is normalized (e.q.
global contrast normalization)



Archetypal Dictionaries

= Finding the best set of archetypes regarding
specific criteria by minimizing

U(D) = —log(e) + ||v]|2

discriminative part (logistic  reconstructive part
regression CV error) (reconstruction error)

= Challenge: elements unknown + number of
elements unknown

» Reversible jump Markov chain Monte Carlo

R. Roscher, S. Wenzel, and B. Waske, “Discriminative Archetypal Self-taught Learning for Multispectral Landcover Classification,” 28
in Proc. of Pattern Recogniton in Remote Sensing 2016 (PRRS), Workshop at ICPR; to appear in IEEE Xplore , 2016.



Reversible Jump Markov Chain
Monte Carlo

Advantages
= Finds global optimum

Drawbacks

= Computation of discriminative part and
sparse representation is slow
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Discriminative STL

J - =

[ ]
N
(@)
<
L
7S
C
.
n
O
(D
@)
—t
D)
Q
LQ F ‘}_‘. i‘_“", oy .. .. ;
M A \:&2"“'\ » e q ; :
U) St : Sy
Q
(@)
0
=
—
(D
Q.
O
<
@)
=
(@)
~
O
PR
Q.

sensor (0.61m/pixel, R-G-B-NIR)

8 land cover classes

= Image patches of size 5x5 pixel

= Evaluation by leave-one-out estimation
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Discriminative STL

Zurich data set
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= Average number of used dictionary elements is 22
with a standard deviation of approximately 6

elements

Roscher, R., Wenzel, S., Waske, B. (2016). Discriminative Archetypal Self-taught Learning for Multispectral Landcover
Classification, Proc. of Pattern Recogniton in Remote Sensing, Workshop at ICPR; to appear in IEEE Xplore
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Going Deep (Ongoing Research)

= Deep self-taught learning with sparse
representation

Qb — D1a
a’ = DQ/@

s = D3y

= Qutput from a previous layer serves as
input the next layer

= Feature representation in last layer
used for classification -



Deep Self-taught Learning

sparse representation
archetypal analysis |—> D2 sparse representation | layer 2

sparse representation

archetypal analysis |—> Dl sparse representation | layer 1
unlabeled image patches labeled image patches
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Deep Self-taught Learning

backpropagation

| evaluation |

t

| classifier training |

archetypal analysis |—> DL sparse representation | layer L
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Deep Self-taught Learning

sparse represe%—‘
sparse representation | layer 2

archetypal analysis [—> [),

sparse represe%—‘
sparse representation | layer 1

archetypal analysis = [

6b - 66 - &

unlabeled image patches labeled image patches
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Self-taught Learning - Résume

= Self-taught learning with sparse
representation can find a discriminative
feature representation

= Archetypal dictionaries are undercomplete,
yet powerful

= Initialization of archetypal analysis
influences the classification success

= Extension to Deep STL promising

= All activations can be interpreted as mixings of
archetypes

= Deeper layers are deeper mixings

36



Sparse Representation-based
Spectral Clustering for Change
Detection
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Change Detection Task

Processed satellite images Change maps

= 2 images: pre-event and post amount of binary
event change

1

Feature extraction =——p LB Evaluation +

change assigment Post-processing
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Data set
Bastrop fire dataset (Landsat 5 TM)
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Pre-event image Post-event image
Challenges
= No label information

= Spectral differences due to changing

weather conditions, atmospheric conditions,

seasonal effects...
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Spectral Clustering

Spectral clustering performs clustering
on the singular vectors to the smallest
singular values derived from a
unnormalized Graph Laplacian

L=D-W D =diag (), wmn)
similarity/adjacency degree matrix
matrix

or normalized Graph Laplacian

1 1
Leym = D"ZLD™?

Von Luxburg, U. (2007). A tutorial on spectral clustering. Statistics and computing, 17(4), 395-416.
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SR for Change Detection

= Approach: Clustering on stacked images

= Sparse representation is used to build a

sparse adjacency graph W for spectral
clustering

~

&, = argmin, || Ta,, — ¢@,,||2 subject to a, =0

T = [¢17--'7¢n—1?¢n+1"'"qu]
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Sparse Representation for
Change Detection

Sparse archetypal adjacency matrix

= Building a sparse representation-based
graph is too computational intense

= Using landmarks = archetypes
= Nystrom method for large data sets
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Change assignment

= Change in each cluster is derived from
the means obtained from k-means

", = H change ‘ B I ‘

= Change of cluster mean is assigned to
whole cluster

43



Results

Ground truth K-means Spectral clustering

Roscher, R., Drees, L., Wenzel, S. (2017). Sparse Representation-based Archetypal Graphs for Spectral Clustering,
IGARSS, accepted
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Sparse Representation for
Change Detection
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Archetypal Analysis for
Unmixing
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" Pixel with class information

Unmixing Task

Processed satellite image

‘Bernaulbel Berlin

S e = Frédersd
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irk Treptow-Kopenick =

fZeuth'en

e

Sub-pixel quantification

(labeled)
= Pixel without class information
(unlabeled)
Endmember
extraction Reconstruction
= Manually or =P by sparse
. representation

Automatically

Evaluation

47



Unmixing Task

1. task: Find suitable endmembers
= manually derived spectral library
= archetypal dictionary

2. task: Estimate fractions (activations)
= Sparse representation

a = argmin||Da — ¢|| st. a=0, Y ao;=1
t
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Airborne Sensor: HyMap
111 spectral bands

Observed wavelength
450nm - 2500nm

Spatial resolution of
3.6m

Visualized as RGB-image
with the wavelengths
R=640nm, G=540nm
and B=450nm

51



Reference Information

= Reference information
was manually obtained
= digital orthophotos
= cadastral data

= 4 |and cover classes
= Impervious surface
= VVegetation
= Soil & Sand
= Water
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Simulated EnMAP Data

e - o

D TR

D R g 9 AL
o = b

= = Simulated EnMAP scene of
the same area
= Spatial resolution of 30m

= 1495 ENnMAP pixels were
obtained from the simulation
tool, containing the fractions of
the land cover classes ranging
from O to 100%

> Task: Reconstruction of fractions
of simulated ENMAP data
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Archetypal Dictionary vs.
Manually Derived Spectral Library

= Archetypal dictionaries were
interpreted using reference data

Archetypal Manually derived
dictionary library
Imp. Surface 25 39
Vegetation 12 31
Soil 2 4
Water 1 1
2 40 75

= High total amount of spectra in the
manually derived spectral library
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Evaluation

Archetypal Manually derived
dictionary library
| €| 1.1 0.0
Imp. Surface 12.2 16.0
§ Vegetation 11.0 9.2
o | Soil 2.5 2.1
S |water 1.9 12.2
7/ 6.8 9.9

= High number of elementary spectra in
library results in a small reconstruction error

= All dictionaries achieve similar and
satisfactory solutions

Drees, L. and Roscher, R. (2017). Archetypal analysis for sparse representation-based hyperspectral sub-pixel 55
quantification, ISPRS Ann. Photogramm. Remote Sens. Spatial Inf. Sci., IV-1/W1, 133-139



Summary

= Exploitation of unlabeled samples for
learning
= Self-taught learning
= Unsupervised learning

= Sparse representation is a versatile
tool

= More and more research goes into the
direction of unsupervised pre-training
in combination with supervised
learning
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Nystrom Method

' /SVD ' W
W L W
[ L= sym,12 C —
> _Lsym,21 Lsym,22_ _G21_

= Low rank approximation of Gram matrix

GrG=CW/ CT
t

Pseudo-inverse of low rank approximation of W

= Singular values and vectores
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