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 Multi-model climate projections
 How to gain confidence in Earth system models (ESMs)?

2. Overview  Coupled Model Intercomparison Project Phase 6 (CMIP6)

3. Climate Informatics Opportunities for Earth system model evaluation
 Data Management for efficient & more routine ESM evaluation with observations 

 Data Analysis with data science methods 

4. Summary
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1. Introduction
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Climate projections in the IPCC Fifth Assessment Report (AR5) largely based on climate model 
output coordinated by the World Climate Research Programme (WCRP) Coupled Model 
Intercomparison Project Phase 5 (CMIP5).

The objective of WCRP’s CMIP is to better understand past, present and future climate change 
in a multi-model context by defining common experiment protocols, forcings and output.

Multi-model mean and spread is commonly used for climate projections
1. Spread of model ensemble often used as first-order estimate of projection uncertainty.
2. Used to determine why similarly forced models produce a range of responses.

Climate Model Projections

IPCC AR5, Fig. SPM 7a
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Distillation of robust information 
from multi-model output is 
needed for science and as 
evidence for policy-making

CO2 Concentration RCPs



Climate Model Projections WG I AR5
- Largely based on Coupled Model Intercomparison Phase 5 (CMIP5) simulations -

Figure SPM.7

Relative to the 1986-2005 average WG I
Paleoclimate Archives (Chapter 5)
Process Understanding

Chapter 6: Carbon and other Biogeochemical Cycles
Chapter 7: Clouds and Aerosols

From Forcing to Attribution of Climate Change
Chapter 8: Anthropogenic& Natural Radiative Forcing 
Chapter 9: Evaluation of Climate Models 
Chapter 10: Detection and Attribution of Climate Change: from 
Global to Regional 

Future Climate Change and Predictability
Chapter 11: Near-term Climate Change
Chapter 12: Long-term Climate Change: Projections, 
Commitments and Reversibility 

Integration
Chapter 13: Sea Level Change 
Chapter 14: Climate Phenomena and their Relevance for Future 
Regional Climate Change

Atlas of Global and Regional Climate Projections 

Process understanding and projections including 
uncertainty estimates also relevant for 
WG II and III



How do we gain confidence in climate model projections? 
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IPCC AR5 Chapter 9, Fig. 9.7

Relative error measures of
CMIP5 model performance
(normalized by the median
error of all model results),
based on the global seasonal-
cycle climatology (1980–2005)

• Based on physical understanding of the climate system and its representation in 
climate models, and 

• On a demonstration of how well models represent a wide range of processes and 
climate characteristics on various spatial and temporal scales 

 Climate models have 
continued to be developed 
and improved since the AR4. 
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Equilibrium Climate Sensitivity Remains Uncertain
Defined as the change in global mean surface temperature at equilibrium that is caused 

by a doubling of the atmospheric CO2 concentration.

The model spread in ECS 
ranges from 2.1°C to 4.7°C
and is very similar to the 
assessment in AR4 (IPCC 
AR5, Chapter 9).

IPCC AR5, Fig.12.31
Is the multi-model mean always the best measure?
The spread of an ensemble of models is often used as 
a first-order estimate of projection uncertainty
 Despite the fact that models differ in terms of 

resolution, processes and components included, 
and agreement with observations.

 Despite there is inter-model dependence

Large Uncertainty Remains in Some Projected Variables
September Arctic sea ice extent



2. CMIP6 Organization and Design
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(2) Standardization, coordination,
infrastructure, documentation

DECK (entry card for CMIP)
For enhanced model evaluation 
and evaluation consistency

i. AMIP simulation (~1979-
2014)

ii. Pre-industrial control 
simulation

iii. 1%/yr CO2 increase 
iv. Abrupt 4xCO2 run

CMIP6 Historical Simulation 
(entry card for CMIP6) 
v. Historical simulation using 

CMIP6 forcings (1850-2014)

(1) A handful of common experiments

DECK (Diagnosis, Evaluation, and Characterization of
Klima) & CMIP6 Historical Simulation to be run for each
model configuration used in CMIP6-Endorsed MIPs

CMIP: a More Continuous and Distributed Organization 

Eyring et al., Overview CMIP6, GMD, 2016



21 CMIP6-Endorsed MIPs 

Diagnostic MIPs
Eyring et al., Overview CMIP6, GMD, 2016



CMIP6: Participating Model Groups

New in CMIP:
2 new model groups from Germany (AWI, MESSY-Consortium)
4 new model groups from China (CAMS, CasESM, NUIST, THU)
1 new model group from Brazil (INPE)
1 new model group from India (CCCR-IITM)
1 new model group from Taiwan, China (TaiESM)
1 new model group from USA (DOE)
1 new model group from Republic of Korea (NIMS-KMA)
1 new model group from South Africa / Australia (CSIR-CSIRO)
========================================
 12 new model groups so far

* Other models can join providing DECK and historical simulations are submitted

Institution Country Institution Country Institution Country
1 AWI Germany 12 DOE USA 23 MRI Japan
2 BCC China 13 EC-Earth-Cons Europe 24 NASA-GISS USA
3 BNU China 14 FGOALS China 25 NCAR USA
4 CAMS China 15 FIO-RONM China 26 NCC Norway
5 CasESM China 16 INM Russia 27 NERC UK
6 CCCma Canada 17 INPE Brazil 28 NIMS-KMA Republic of Korea
7 CCCR-IITM India 18 IPSL France 29 NOAA-GFDL USA
8 CMCC Italy 19 MESSY-Cons Germany 30 NUIST China
9 CNRM France 20 MIROC Japan 31 TaiESM Taiwan, China
10 CSIR-CSIRO South Africa 21 MOHC UK 32 THU China
11 CSIRO-BOM Australia 22 MPI-M Germany



Models are Increasing in Complexity and Resolution
From AOGCMs to Earth System Models with biogeochemical cycles, from lowres to highres
130 km resolution orography

25 km resolution orography

I. Allows to study processes
as horizontal resolution is
increased to “weather‐
resolving” global model
resolutions (~25km or finer)

Atmospheric Chemistry
Das Bild kann zurzeit nicht angezeigt  
werden.

II. Allows to study new physical &
biogeochemical processes & feedbacks (e.g.,
carbon cycle, chemistry, aerosols, ice sheets)

Increase in complexity and resolution
More (and new) models participating in CMIP6
 Increase in data volume (from ~2PB in CMIP5 to ~20-40 PB 

in CMIP6)
 Archiving, documenting, subsetting, supporting, distributing, 

and analysing the huge CMIP6 output will challenge the 
capacity and creativity of the largest data centres and fastest 
data networks, and the analysis of the data.
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Earth System Observations
 Satellite measurements 
 Insitu data
 Meteorological reanalyses

The recent progress in climate science is producing an unprecedented amount of 
data from climate models and observations, giving us a unique opportunity to 
develop and apply methods for machine learning and data mining.
The increasing desire for operational analysis means that a system has to be set 

in place that allows for an efficient and comprehensive analysis of the large volume 
of data from models and observations.

Earth System Observations
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Tandem-L

MERLIN

Sentinel Family

ESA CCI



Over the last decades, the magnitude of climate data from satellite sensors and 
climate models has substantially increased. This is starting to overwhelm the 
relatively simple tools and methods currently used to analyse the data. 

It is therefore essential to develop an innovative and efficient computational 
approach to address these analysis challenges. 
This relatively new field is called Climate Informatics and represents a promising 

and growing path of research, which could contribute to substantially enhance 
understanding of the Earth system and confidence in future climate projections. 

 The complexity and vast amount of Earth system data together with the 
pressing scientific and societal demand for more accurate climate projections, 
makes Earth system data an ideal candidate for developing and applying 
computational intelligent analysis techniques to quickly sort through the 
data from models and observations.

 New methods of Data Science (e.g., data mining, artificial intelligence, 
machine learning) could potentially help finding new ways of analysing the data. 

 These techniques have been successfully applied in other natural sciences 
(e.g., biology), yet they are not fully exploited in climate research.

Climate Informatics
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see also Monteleoni et al. (2013 )



3. Climate Informatics 
Opportunities for Earth system 

model evaluation
(A) Data Management for efficient and more routine ESM 

evaluation with observations 
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CMIP5 MMM

CMIP5 MMM - OBS

Similar to Figure 9.7 of AR5

Similar to Figure 9.24 of AR5Similar to Figure 9.5 of AR5

Similar to Figure 9.24 of AR5

Broad Characterization 
of Model Behavior 

(incl. IPCC AR5 Chap 9 & 12 
diagnostics in ESMValTool)

Net Cloud radiative effect against CERES EBAF

Running alongside 
the ESGF

Earth System Model Evaluation Tool (ESMValTool) developed as community tool at DLR-IPA (PI) and 
many other institutes to produce well-established analyses as soon as CMIP model output is submitted

Monsoon Precipitation Intensity 

Link to projections

How to characterize the wide variety of models in CMIP6?
- Routine Benchmarking and Evaluation Central Part of CMIP6 -

Eyring et al., ESMValTool version 1.0, GMD (2016)



ESMValTool version 1.0 released as open source software

• Community diagnostics and performance metrics 
tool for the evaluation of Earth System models

• Open source code based on python, NCL, R etc.
• Standardized model evaluation can be performed 

against observations, against other models or to 
compare different versions of the same model

• Many diagnostics and performance metrics covering 
different aspects of the Earth System (dynamics, 
radiation, clouds, carbon cycle, chemistry, aerosol, sea-
ice, etc.) and their interactions

• Well-established analysis from peer-reviewed literature
• Ensuring traceability and provenance (e.g. input data, 

metadata, diagnostics (incl .citation), tool version, doi)
• Currently ≈ 80 scientist from >30 institutions part of the 

development team and  > 120 users
• Development in several projects (e.g. APPLICATE, 

CRESCENDO, C3S-MAGIC, ESA CMUG, PRIMAVERA)
• Rapidly expanding
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http://www.esmvaltool.org/
Eyring et al., GMD, ESMValTool v1.0, 2016



 We argue that the community has reached a critical juncture at which many baseline aspects 
of ESM evaluation need to be performed much more efficiently

 The resulting, increasingly systematic characterization of models will, compared with early 
phases of CMIP, more quickly and openly identify strengths & weaknesses of the simulations. 

 This activity also aims to assist modelling groups in improving their models
 Running alongside the ESGF, as soon as the output is published

Envisaged Workflow for Model Evaluation in CMIP

Eyring et al., ESD  (2016)



Envisioned ESMValTool Workflow for routine evaluation 
at the ESGF (CMIP6-DICAD)

19

Modified from: Eyring et al., ESMValTool v1.0, GMD, 2016

Download data to
Cache

plot

netCDF

log file

Web based
Visualisation
Discussion
Forum

Step-wise access:
1. ESMValTool core team
2. Modelling groups
3. Public



Reproducibility & Provenance of evaluation results 
Logfile
At each execution of the tool a log 
file is automatically created 
The log file contains:
• The list of all input data which 

have been used (version, data 
source, etc.)

• The list of variables that have 
been processed

• The list of diagnostics that have 
been applied

• The list of authors and 
contributors to the given 
diagnostic, together with the 
relevant references and projects

• Software version of ESMValTool
that was used

Namelist
Evaluation analysis is controlled by the 
namelist file that defines the internal 
workflow for the desired analysis.
It defines:
• Input datasets (observations, models)
• Regridding operation (if needed)
• Set of diagnostics
• Misc. (output formats, output folder, 

etc…)

Output files (NetCDF, png)
Contain meta data from input files and 
meta data generated by ESMValTool

Observational data
• Well defined processing chain 
• creation of metadata
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IPCC AR5, Fig.12.31

3. Climate Informatics 
Opportunities for Earth system 

model evaluation
(B) Data Analysis with data science methods 



Promising Examples Climate Informatics Analysis
DLR.de  •  Chart 22

1. Emergent constraints
 Emergent constraints between observable aspects of variability and Earth

system sensitivities offer the possibility to reduce uncertainties in climate
projections.

 Finding such correlations is a challenge and data mining could help
identifying a comprehensive list of strong correlations that could used as
starting point for further analysis.

2. Improving multi-model ensembles of climate projections
3. Anomaly detection for abrupt climate change and extreme events
4. Multivariate process evaluation

 Model evaluation approaches are often limited to the performance
assessments of multiple single variables but to identify specific events
requires looking across variables in space and time.

 New algorithms could help in clustering and detecting such patterns and
climate networks constructed from observations might help identifying
dependencies between climate variables and processes.

For further examples, see also Monteleoni et al. (2013 )



1. Internal Variability
• Due to the chaotic nature of climate 

system
• Noise of climate record is constant with 

time
2. Emission Uncertainty

• Dominant uncertainty for long term 
projections estimated as mean of 
different scenarios

• Varying greenhouse gas emissions
• Land use change

3. Climate Response Uncertainty
• Models are build on same principles but 

parametrizations are needed
• Increases when process become more 

relevant
• Decreases with model improvements 

and observational constraints

Example 1: Emergent Constraints
Uncertainties in Projections of Future Climate
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(IPCC AR5 2013; FAQ 1.1)



Constraint quantity of 
interest

Observational Constraint
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Emergent Constraints (ECs)
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• ECs are a relationship across an ensemble of models, between some aspect of Earth 
system sensitivity and an observable trend or variation in the current climate
 Emergent relationship because it emerges from the ensemble of ESMs.
 Constraint 

 because it enables an observation to constrain the estimate of the Earth System sensitivity 
in the real world.

 The goal is to find a observable physical explanation to constrain the unobservable Earth 
system sensitivity

Probability Density

Quantity of interest: sensitivity 
or future projecƟon → Not 
observable

Observable variation (e.g. interannual or 
seasonal variability) or trend 

Ea
rt
h 
sy
st
em

 s
en

sit
iv
ity

Earth System Models



Emergent Constraints: Carbon Cycle Feedbacks
Change land carbon uptake: ൌ [GtC]	ࢊ࢔ࢇࡸ࡯∆

 : Carbon cycle - CO2 concentration Feedback – Negative Feedback

O

Plants take up CO2 via photosynthesis when they 
grow, so CO2 is removed from the atmosphere 

and is stored as organic carbon in the plants. This 
flux is the Gross Primary Productivity (GPP). 

CO2

L

O

: Carbon cycle - Climate Feedback – Positive Feedback

Climate warming reduces the efficiency of 
CO2 absorption by the land and ocean => more 
emitted carbon stays in the atmosphere leading 

to additional warming

 T
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Wenzel et al., Nature, 2016

Wenzel et al., JGR, 2014
Cox et al., 2013

+

L
-44േ14 GtC/K (constrained)
49±40 GtC/K (unconstrained)
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Projected land photosynthesis constrained by changes in 
the seasonal cycle of atmospheric CO2

Wenzel et al., Nature, 2016

The unknown: 
CO2 Fertilization of Photosynthesis
Here: relative change in high-latitude (60-90°N) 
GPP due to a doubling of atmospheric CO2 in 
the 1%BGC simulations

20% to 60% projected  increase
of GPP due to doubling of CO2

Why should we care?
 Photosynthesis is the ultimate source of energy for life on Earth.
 Vegetation and soil are currently slowing down global warming by absorbing

about 20% of our CO2 emissions. This land carbon sink is believed to be in part due
to increases in photosynthesis.

 But how will photosynthesis change?
 Climate-carbon models agree that elevated atmospheric CO2 concentrations will

enhance terrestrial GPP but the magnitude of this CO2 fertilization effect varies.



The Observations: Increasing Seasonal Amplitude of Atmospheric CO2

Graven et al., 2013

• CO2 concentrations measured for many 
decades on Hawaii and Alaska show 
characteristic cycles, with lower values in the 
summer when strong photosynthesis causes 
plants to absorb CO2, and higher values in 
the winter when photosynthesis stops. 

• The peak-to-trough amplitude of the seasonal 
cycle therefore depends on the strength of the 
summer photosynthesis and the duration of 
the growing season. 

The measurements made on Hawaii and in 
Alaska show an increasing amplitude of the 
seasonal cycle. 

But what does this mean for the future?



Comparison of CO2 seasonal amplitudes against annual mean CO2 
for CMIP5 historical simulations and observations at BRW

Wenzel et al., Nature, 2016

Observations



r=0.96

Emergent Constraints on CO2 Fertilization

60oN‐90oN
~37%

30oN‐90oN
~32%

Point Barrow (BRW: 71.3° N, 156.6° W), Alaska (high-latitude)

Cape Kumukahi (KMK: 19.5° N, 155.6° W), Hawaii (extratropical)

Wenzel et al., Nature, 2016
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Compatible CO2 Emissions
 Large uncertainty in CO2 emissions compatible with a given climate target.
 Budget for the 2°C target is about 700 GtC to 1300 GtC.
 Given ~550 GtC emitted so far, that’s 15 to 75 years of current anthrop. CO2

emissions. 

Next to work on: Development of data mining methods
 Automate the process of identifying current climate quantities with skill at

predicting individual feedbacks, ECS and transient climate response to emissions
(TCRE).

IPCC AR5



Example 2: Weighted sea-ice projections based on 
model-performance and interdependence

Knutti et al., GRL, 2017

Development of machine learning
techniques for model weighting
Are there weighting strategies that
maximize predictive skill?

Diagnostics included in this example:
1. None (unweighted)
2. Climatological mean (1980-2013) Sep

sea ice extent,
3. Sep sea ice extent trend 1980-2013,
4. Climatology of monthly surface

temperature (1980-2013)
5. Interannual variability of monthly

surface temperature,
6. All diagnostics 2-5

Observations
Mean and 5-95% range for 

No weighting (black line, grey band) 
Weighting (red line and band) 



Example 3: Maximally Divergent Intervals: 
Detection of Anomalies in Multivariate Time-Series Data

www.DLR.de  •  Chart 32 > Lecture > Author  •  Document > Date

ܮܭ ,ூ݌ ஐ݌ ൌ න݌ூ ݔ log
ூ݌ ݔ
ஐ݌ ݔ ݔ݀

• Maximizing Kullback-Leibler
divergence

• Example: Detection of hurricanes
• Cooperation in EU-H2020 

Project BACI (FSU, MPI-BGC)

Rodner et al., Anomaly Detection Workshop  (2016)



In cooperation with DLR Institute of Atmospheric Physics (Eyring), the official 
external collaboration partner of the group FSU Computer Vision (Denzler), and the 
MPI Department of Biogeochemical Integration (Reichstein). 
Development of innovative and highly efficient data science methods for Earth 

system data analysis. 
Focus of research group on three broad scientific themes:

 Basic research on graphical models  
 Data management for an efficient data analysis: Development of innovative and highly 

efficient methods for data proecessing to be implemented in the ESMValTool.  
 Data analyses: Development of innovative and highly efficient data science methods

for data analysis for the extraction of space-time characteristics in massive geoscientific 
data from Earth system models and observations; subsequent implementation in the 
ESMValTool.

New Group Climate Informatics at the DLR Data 
Science Institute in Jena
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 Climate Informatics 
 is a challenging and promising research field where little has been done so 

far and where a concentrated effort will have a high impact both to advance 
science and to address topics of critical importance for the society. 

 It bridges the gap between data and understanding through a strong 
collaboration between climate scientists with machine learning, data mining, 
and statistics researcher (see also Monteleoni et al., 2013).

 New methods of Data Science, such as data mining, artificial intelligence and 
machine learning techniques could potentially help finding new ways of analysing 
Earth system data and helping to ensure that results are robust.

 The newly-developed data science methods will be included in the 
ESMValTool so open a broad opportunity for other applications that analyze Earth 
observations or models (or both). 

 Efficiently provide a number of derived products such as for example:
 Multi-model means (operational service)
 Evaluation of individual or multiple models with observations
 Multiple observational datasets

Summary
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